Improving the Transportation Component of State Greenhouse Gas Emissions Inventories

International Emissions Inventory Conference June 4, 2008

Frank Gallivan and Michael Grant ICF International

John Davies
U.S. Environmental Protection Agency

Overview

- History of state inventories and current practice
- Potential Methodological improvements
 - □ Disaggregation by mode / vehicle category / activity
 - □ Refinement of disaggregated estimates
- Challenges
 - □ Technical issues
 - Engaging relevant policies
- Recommendations

GHG Emissions Inventory - History

- National greenhouse gas inventories established under the United Nations Framework Convention on Climate Change (Ratified in 1992 by U.S.)
- Reporting guidelines established under Working Group I of Intergovernmental Panel on Climate Change in 1996
 - □ Ensure that emissions inventories submitted to UNFCCC are consistent and comparable

Beginnings of State Inventories

- EPA initiated the State and Local Climate Change Program (SLCCP) in 1992
 - Objective of building capacity in state and local governments and encourage them to take action to reduce GHG emissions
 - Encouraged states to prepare their own GHG inventories
- Through the SLCCP, the EPA has developed and published guidance for states to produce GHG inventories.
 - ☐ Guidance was first issued in 1992 and is updated regularly to be consistent with methodologies for the U.S. Inventory
 - □ EPA methods conform to international guidance issued by IPCC
 - □ EPA has also issued spreadsheet-based tools to assist states with the development of inventories

History of State Inventories cont'd

- First state inventories were completed in the 1990s
- Since then, 44 states have completed inventories, and one more is presently completing an inventory
- State environmental agencies lead the development of the GHG inventories, using the guidance and tools provided by EPA

Transportation in GHG Inventories – National Level

 Transportation sources account for 29% of total U.S. GHGs (28% excluding bunkers)

Transportation in state inventories

In 14 states, the transportation sector constitutes the largest source of CO₂ emissions. Projected transportation share of GHG emissions in various states, 2010.

Source: various state inventory reports, available through www.climatestrategies.us.

Development of Transportation Emissions Estimates in State Inventories

- Top-down approach is the standard (approach followed by EPA's State Inventory Tool)
- State fuel sales used as a proxy for fuel consumption

Projected transportation emissions by source in various states, 2010.

Further disaggregation of on-road would greatly improve utility of information

Disaggregating CO2 by Mode: Top-Down Approach

Disaggregating CO₂ by Mode: Bottom-Up Approach

Benefits of Bottom-Up CO₂ Calculations

- Better suited to producing greater level of detail
- Can be used more easily to estimate CO₂ emissions at a range of geographic levels (state, metropolitan area, or municipality)
- Fits naturally with transportation modeling activities, which estimate VMT at the regional or local level

Challenge of Bottom-Up CO₂ Calculations

 Estimating fuel efficiency, since comprehensive fuel efficiency data is maintained at the national level (California and New York are rare example of a state with its own fuel efficiency estimates)

Using MOVES for bottom-up estimates

- Best upcoming tool for developing bottom-up GHG emissions estimates (fuel consumption / CO₂, CH₄ and N₂O)
- Simulates actual vehicle drive cycles provides greater sensitivity to effect of travel conditions (congestion) and travel speeds
- Inputs include vehicle population, fuel efficiency and VMT

Inventory Challenge #1: Fuel Efficiency and Vehicle Activity Impacts on Fuel Consumption

- Uncertainties in fuel efficiency
 - □ Fuel efficiency depends on fleet characteristics, age of vehicles, and driving conditions
 - □ Fleet mix and fuel efficiency may vary substantially from national averages
- Uncertainties in vehicle activity / VMT
 - MPO estimates generally more reliable than statewide
 - Challenge of reconciling different MPO methodologies and achieving a reliable statewide figure

Inventory Challenge #2: On-Road Boundary Issues

- Problem arises when fuel sales do not correspond with geographic area of emissions
- Problem most commonly arises because of commuting across state lines
- Common in smaller states and states where metropolitan areas that cross state borders and have substantial cross-state commuter traffic
 - □ New Jersey: FHWA 19% > MOVES
 - □ New Hampshire: FHWA 23% > MOVES
- Problem less significant for heavy-duty vehicles because of International Fuel Tax Agreement, which reallocates fuel taxes to states where fuel is used rather than sold

Addressing On-Road Boundary Issues - New York / New Jersey Example

- New York: VMT had grown by 20 percent from 1990 to 2000 while fuel sales had declined by 4 percent
- New Jersey: fuel sales were overstating implied VMT at an increasing rate
- Solution: New York combined fuel sales in the two states, calculated average fuel economy and then applied these figures to New York VMT to calculate fuel consumption

Inventory Challenge #3: Non-Road Boundary Issues

- Aircraft, rail and ships location of fuel sales versus fuel consumption
 - □ Impact of major port and airports
- International bunkers
 - □ Fuel sold to aircraft and ships for international travel
 - According to reporting guidelines, these emissions should be deducted, but states often lack data to make this distinction

Inventory Challenge #4: Characterizing Upstream Emissions

- Relevance to biofuels analysis
- State Inventory Tool removes CO₂ emissions from ethanol on the basis that ethanol is a carbon-neutral fuel (carbon burned is the same as carbon sequestered when corn is growing)
- Problem: Ignores upstream emissions from the cultivation of corn and the production and distribution of ethanol
- While policy analysis of biofuels will include the impact of production and distribution, the state inventory baselines will not includes these emissions

Inventory Challenge #5: Characterizing Trends

Change in U.S. GHG Emissions since 1990

- Minimal attention to timeseries trends and factors affecting emissions output
- Light-duty sources are treated as largely synonymous with the transportation sector

Recommendation #1 - Disaggregate emissions by mode / major vehicle category

- More intuitive and provides a more transparent baseline
- Shifts responsibility to state and regional transportation experts, who are most familiar with the best available local datasets

Recommendation #2: Examine All available datasets and consider developing new datasets

- Will help address sources of error is state fuel consumption estimates
- Will help in the creation of disaggregate emissions estimates
- California developed its own model to forecast fleet mix and fuel efficiency

Recommendation #3: Consider Implementing Bottom-Up Estimation Techniques

- Better suited to detailed / disaggregate estimates
- More accurate than top-down estimates
- Not presently integrated into standard inventory tools
- MOVES will be valuable when it come online

Recommendation #4: Bridge the Gap between Biofuels Policy Analysis and Inventory Accounting Methods

- Current methods of accounting for biofuels are sufficient at the national level, but create problems for state-level biofuels analysis
- While state policy analysis of biofuels will include the impact of production and distribution, the state inventory baselines will not includes these emissions
- Addressing this problem may require federal guidance

Recommendation #5: Improve Characterization of Trends and Key Factors to better inform Policy Analysis and Policy Making

Change in U.S. GHG Emissions since 1990

Inventory Recommendation #6: Providing Sufficient Detail for Policy Analysis

